SR UNIVERSITY

Department of Electrical and Electronics Engineering

R25 Course Structure and Syllabus - Ph.D. EEE

I SEM								
S.No.	Course Code	Course	Hours / Week			ek		
			L	R	P	C		
1 25EE410PC70	25EE410DC702	RESEARCH METHODOLOGY IN ELECTRICAL	4	1	0	5		
	23EE410FC702	AND ELECTRONICS ENGINEERING						
2	25EE400PC701	ADVANCED POWER ELECTRONICS FOR	4	0	0	4		
		RENEWABLE SOURCES						
3	25EE400PC703	SMART GRID AND ACTIVE DISTRIBUTION	4	0	0	4		
		NETWORK						

(25EE410PC702) RESEARCH METHODOLOGY IN ELECTRICAL AND ELECTRONICS ENGINEERING			L	R	P	C
			4	1	0	4
Course type	-	Pre-requisite	-			

Unit I: Objectives and Types of Research

- 1. Motivation and objectives of research
- 2. Scope and significance of research in Electrical and Electronics Engineering
- 3. Research methods vs research methodology
- 4. Classification of research descriptive, analytical, applied, and fundamental
- 5. Quantitative vs qualitative research approaches
- 6. Conceptual vs empirical research in engineering contexts
- 7. Characteristics of good research and identifying valid problems
- 8. Steps in the research process from idea generation to implementation
- 9. Case studies of research types in renewable energy and automation

Unit II: Research Formulation

- 10. Defining and formulating the research problem
- 11. Selecting a research problem feasibility and relevance
- 12. Necessity of defining the research problem precisely
- 13. Role and importance of literature review in research formulation
- 14. Primary and secondary sources of literature
- 15. Use of monographs, patents, and research databases in engineering research
- 16. Web-based literature search and online research tools
- 17. Conducting a critical literature review and identifying research gaps
- 18. Developing working hypotheses and theoretical frameworks
- 19. Examples of hypothesis formulation in Electrical and Electronics Engineering

Unit III: Research Design and Methods

- 20. Basic principles and objectives of research design
- 21. Features of a good research design and its necessity
- 22. Important concepts variables, control, reliability, and validity
- 23. Observation, experimentation, and simulation in engineering research
- 24. Laws, theories, prediction, and explanation in engineering sciences
- 25. Development of analytical and simulation models in research
- 26. Planning and structuring a research investigation
- 27. Exploration, description, diagnosis, and experimentation in EEE studies
- 28. Application of MATLAB, Simulink, and statistical tools in data analysis
- 29. Case study: Developing a research design for renewable system optimization

Unit IV: Time Series Analysis and Data Handling

- 30. Methods of observation and data collection in engineering research
- 31. Sampling techniques random, stratified, and systematic
- 32. Methods of data processing and cleaning
- 33. Data analysis and validation using statistical methods
- 34. Use of software tools SigmaSTAT, SPSS, MATLAB statistics toolbox
- 35. Hypothesis testing using t-test and ANOVA
- 36. Generalization and interpretation of research results
- 37. Time series analysis for electrical load forecasting
- 38. Curve fitting techniques for analyzing electrical datasets
- 39. Application of interpolation and regression in EEE data modeling

Unit V: Reporting and Thesis Writing

- 40. Structure and components of scientific reports and theses
- 41. Planning and layout of research reports title, abstract, introduction, and methodology
- 42. Presentation of results tables, graphs, and illustrations
- 43. Formatting, referencing, and citation styles (IEEE, APA, MLA)
- 44. Use of software tools Word processors, LaTeX, Mendeley, and Zotero
- 45. Writing the discussion, conclusion, and future work sections
- 46. Preparing technical reports and seminar presentations
- 47. Oral presentation skills and effective use of visual aids
- 48. Best practices in academic writing and communication in research

Textbooks:

- 1. W. C. Booth, G. G. Colomb, J. M. Williams, J. Bizup, and W. T. FitzGerald, *The Craft of Research*, 5th ed. Chicago, IL, USA: Univ. of Chicago Press, 2024.
- 2. C.R. Kothari and Gaurav Garg, *Research Methodology: Methods and Techniques*, New Age International, 2023.

Reference Books:

1. M. Hammond and J. Wellington, *Research Methods: The Key Concepts*, Routledge Publication, 2021.

(25EE400PC701) ADVANCED POWER ELECTRONICS FOR RENEWABLE SOURCES			L	R	P	C
			4	0	0	4
Course type	-	Pre-requisite	-			

Unit I: Introduction to Renewable Sources

- 1. World energy scenario and the need for renewable energy
- 2. Global and Indian renewable energy potential solar, wind, hydro, geothermal
- 3. Comparative assessment of conventional and renewable energy resources
- 4. Fundamentals of solar radiation and its measurement
- 5. Photovoltaic effect and basics of solar power generation
- 6. P-V and I-V characteristics of solar cells
- 7. Effects of insolation, temperature, and shading on PV performance
- 8. Solar module interconnections, configurations, and ratings
- 9. Maximum Power Point (MPP) and MPPT fundamentals
- 10. Common MPPT algorithms Perturb & Observe, Incremental Conductance
- 11. Standalone PV systems design, components, and operation
- 12. Grid-connected PV systems structure, storage, and AC/DC load interfaces

Unit II: Power Electronics Converters for Renewables

- 13. Introduction to DC–DC converters and their role in renewable systems
- 14. Buck converter operation and renewable energy applications
- 15. Boost and buck–boost converters principles and characteristics
- 16. Isolated converter topologies flyback, forward, and Cuk converters
- 17. Bidirectional converters for hybrid systems and battery charging
- 18. Interleaved and multi-input converter configurations
- 19. Single-phase inverter operation and control
- 20. Three-phase inverter operation and control
- 21. Multilevel inverter topologies Neutral Point Clamped (NPC) and Modular Multilevel Converter (MMC)
- 22. Current Source Inverter (CSI) structure and operation
- 23. Control strategies PWM, voltage, and current control
- 24. Grid connection issues islanding, leakage current, harmonics, and reactive power control

Unit III: Wind Energy Systems

- 25. Fundamentals of wind energy and wind turbine power extraction
- 26. Wind turbine aerodynamics and power coefficient characteristics
- 27. Mechanical control methods pitch and yaw control mechanisms
- 28. Power regulation and Maximum Power Point Tracking (MPPT) in wind systems
- 29. Generators used in wind systems overview and classification
- 30. Permanent Magnet Synchronous Generator (PMSG) working and advantages
- 31. Induction generator (IG) operation with and without converter interface
- 32. Doubly Fed Induction Generator (DFIG) principle and control methods
- 33. Converter topologies for DFIG rotor and grid side configurations

34. Hybrid wind-solar systems – integration challenges and control schemes

Unit IV: Storage Devices and Grid Integration

- 35. Role and importance of energy storage in renewable systems
- 36. Overview of storage technologies batteries, flywheels, supercapacitors
- 37. Battery types and characteristics lead-acid, lithium-ion, sodium-sulfur, flow
- 38. Battery charging and discharging mechanisms and control strategies
- 39. Fuel cells working principle, types, and integration with renewables
- 40. Grid integration of renewable energy systems technical challenges
- 41. AC and DC microgrids structure, operation, and control
- 42. Grid stability, synchronization, and power quality issues
- 43. Building-to-grid (B2G) and distributed generation concepts

Unit V: Interfacing of Electric Vehicles into Active Distribution Networks

- 44. Introduction to Electric Vehicles (EVs) and their grid impact
- 45. Types of power sources in EVs batteries, hybrid storage, and fuel cells
- 46. EV charging infrastructure Type-1, Type-2, and Type-3 setups
- 47. Solar PV-based EV charging stations design and operation
- 48. Vehicle-to-Grid (V2G) technology bidirectional power flow and control

TEXT BOOKS:

- 1. Sudipta Chakraborty, Marcelo G. Simes, and William E. Kramer. Power Electronics for Renewable and Distributed Energy Systems: A Sourcebook of Topologies, Control and Integration (Green Energy and Technology), Springer Science & Business, 2023.
- 2. Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, Massimo Vitelli, Power Electronics and control for maximum Energy Harvesting in Photovoltaic Systems, CRC Press, 2024.
- 3. Chetan Singh Solanki, Solar Photovoltaics: fundamentals, Technologies and Applications, Prentice Hall of India, 2021.

REFERENCE BOOKS:

- 1. Muhammad H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson Education India, 2024
- 2. Remus Teodorescu, Marco Liserre, Pedro Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems, John Wiley and Sons, Ltd., 2021.
- 3. Ali Keyhani, Design of Smart Power Grid Renewable Energy Systems, Wiley-IEEE Press, 2022.

(25EE400PC703) SMART GRID AND ACTIVE DISTRIBUTION NETWORK			L	R	P	C
			4	0	0	4
Course type	-	Pre-requisite	-			

Unit I: Introduction to Smart Grids and Active Distribution Network

- 10. Introduction to traditional power systems and their limitations
- 11. Definition and concept of Smart Grids and Active Distribution Networks
- 12. Justification and need for smart grids in modern power systems
- 13. Functional differences between conventional and smart grids
- 14. Smart grid conceptual model layers, domains, and interactions
- 15. Smart grid architecture logical and physical views
- 16. Communication technologies used in smart grids overview
- 17. Interoperability in smart grids concepts and frameworks
- 18. Role of smart grid standards IEEE, IEC, and NIST standards
- 19. Intelligent grid initiatives around the world case examples
- 20. National Smart Grid Mission (NSGM), Govt. of India objectives and programs

Unit II: Smart Transmission Technologies

- 21. Overview of transmission automation and its importance
- 22. Concept and functions of substation automation systems
- 23. Supervisory Control and Data Acquisition (SCADA) architecture and components
- 24. SCADA applications in transmission and renewable integration
- 25. Energy Management System (EMS) functions and components
- 26. Load forecasting, generation scheduling, and economic dispatch in EMS
- 27. Phasor Measurement Units (PMUs) working principle and data acquisition
- 28. Synchrophasor technology and real-time monitoring applications
- 29. Wide Area Measurement Systems (WAMS) architecture and data communication
- 30. Applications of WAMS in stability enhancement and fault detection
- 31. Integration of SCADA, EMS, and WAMS for intelligent transmission systems
- 32. Challenges and cybersecurity aspects in smart transmission networks

Unit III: Smart Distribution Technologies

- 35. Evolution of distribution networks and need for automation
- 36. Distribution Automation (DA) architecture and operational objectives
- 37. Outage Management Systems (OMS) functionality and benefits
- 38. Automated Meter Reading (AMR) technology and applications
- 39. Automated Metering Infrastructure (AMI) structure and communication protocols
- 40. Fault Location, Isolation, and Service Restoration (FLISR) working principle
- 41. Integration of FLISR with SCADA and AMI for self-healing grids
- 42. Energy Storage Systems (ESS) in smart distribution roles and benefits
- 43. Renewable energy integration in active distribution networks

Unit IV: Smart Consumption over Active Distribution Network

- 44. Smart appliances and their role in energy efficiency
- 45. Low Voltage DC (LVDC) distribution in homes and commercial buildings
- 46. Home Energy Management Systems (HEMS) architecture and functionality
- 47. Smart meters and Net Metering mechanisms
- 48. Building-to-Grid (B2G) concept and energy flow management
- 49. Vehicle-to-Grid (V2G) technology operation and bidirectional power exchange
- 50. Solar-to-Grid (S2G) systems integration and control strategies
- 51. Distributed Energy Resources (DERs) concept and classification
- 52. Microgrids structure, operation, and control hierarchy
- 53. Demand response strategies for peak load management and emission reduction

Unit V: Regulations and Market Models for Smart Grid

- 43. Overview of smart grid regulations and policy frameworks
- 44. Demand Response (DR) types, mechanisms, and benefits
- 45. Tariff design for smart grids Time-of-Day (TOD) and Time-of-Use (TOU) pricing
- 46. Consumer engagement, privacy, and data protection in smart grid operation
- 47. Cost-benefit analysis of smart grid implementation projects
- 48. Market models and regulatory mechanisms for smart grid development

TEXT BOOKS:

- 1. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2020.
- 2. Smart Grid Fundamentals: Energy Generation, Transmission and Distribution by Radian Belu (2022).

REFERENCES:

1. Smart Grids — Fundamentals and Technologies in Electric Power Systems (2nd Edition, 2020) by Bernd M. Buchholz & Zbigniew A. Styczynski

Assistant Dean, Ph.D.

EEE, SR University

HoD

EEE, SR University